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Abstract

We introduce Adversarial Method of Moments (AMM), for models defined
with moment conditions. The estimator is asymptotically equivalent to optimally–
weighted 2–step GMM, but outperforms the GMM estimator in finite samples. We
show this both in theory and in simulations. In our theoretical results, we exploit
the relationship between AMM and GEL estimators to show, using stochastic
expansions, that AMM has smaller bias than optimally–weighted GMM. In our
simulation experiments, we consider different models, including estimation of vari-
ance as in Altonji and Segal (1996) and a dynamic panel data model. We compare
the estimator’s performance to other commonly–used procedures in the literature,
and find that AMM outperforms in cases where other estimators fail. In the ap-
pendix, we extend AMM to simulation–based settings, with an application to the
estimation of DSGE models by matching IRF.

1 Introduction
It is well known, at least since Altonji and Segal (1996), that GMM suffers from impor-
tant finite sample bias. Since then, many alternatives have been proposed, including
the Empirical likelihood (EL), Continuous–Updating (CUE) and Exponential Tilting
(ET) estimators. In a seminal paper, Newey and Smith (2004) shown that all these
estimators share a common structure, being members of a class of generalized empirical
likelihood (GEL) estimators. They also showed that these estimators overcome many
flaws of GMM. However, mostly due to implementation hurdles, GEL estimators have
rarely been used in empirical research.

The goal of this paper is to introduce a new estimator, Adversarial Method of Mo-
ments (AMM), as an easy–to–implement alternative to GEL estimators. As we will
show, AMM share a similar structure to GEL, and thus inherits some of its desirable
finite sample properties. Moreover, AMM is much easier to implement, since computa-
tionally it amounts to run a Logit regression.

The AMM estimator is inspired on Generative Adversarial Networks (GAN) Good-
fellow et al. (2014). GAN approaches estimation via a min–max optimization criterion,
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in which two models compete over the loss: A generative model G, from which we may
sample synthetic data, and a discriminative model D that estimates the probability
that an observation came from the original data rather than the synthetic data. The
maximizer of the parameters corresponds to the value for which D find it more difficult
to distinguish both kinds of data.

AMM primarily considers models that are defined by moment conditions, E[g(xi, θ)] =
0, and restricts the class of discriminators to logistic regression. The estimator, θ̂, is
defined as the value for which the probability (according to the predictions of the lo-
gistic regression) that an observation g

(
θ̂, xi

)
is drawn from a 0 mean variable is the

same for all i and equal to 1/2.
Most related to this paper is Kaji, Manresa, and Pouliot (2020) (KMP), who in-

troduced adversarial estimation for structural models. There, KMP focus on the case
where D is a non–parametric estimator of an oracle discriminator, and showed that
in that case, the estimator of the structural model attains efficiency. Moreover, KMP
showed that if D is set to be a neural network with zero hidden layers and the ac-
tivation function is chosen to be logistic, the estimator asymptotically equivalent to
SMM (Gourieroux, Monfort, and Renault (1993)).1 Instead, in this paper we focus
on models described by a finite set of moment conditions, so our procedure does not
involve solving (and simulating) a structural model. Moreover, we are interested in un-
derstanding the finite–sample properties of adversarial estimators, whereas KMP was
all about asymptotics.

The paper is structured as follows: In Section 2, we set the notation and describe
the different estimators we will consider. Section 3 describes the AMM estimator in
detail. We distinguish two cases: Models based on moment conditions, and structural
models from which it is possible to draw simulations. Section 4 provides Monte–Carlo
evidence of the performance of the AMM estimator: For the first case, we consider the
frameworks of Altonji and Segal (1996) and Arellano and Bond (1991); for the second,
we consider matching the impulse–response functions of a Structural VAR and a New
Keynesian model. Section 5 develops the theory for the asymptotic and finite–sample
properties of the AMM estimator. Section 6 concludes.

2 The Set Up
We consider models with a finite number of moment restrictions. To describe it, let
zi (i = 1, . . . , n) be i.i.d. observations on a data vector z. Also, let θ be a (p× 1)
vector of parameters of interest and g (z; θ) be a (m× 1) vector of functions of the
data, where m ≥ p. The identification requirement is that true parameter value θ0
will satisfy E [g (z; θ0)] = 0, where E [·] denotes expectation taken with respect to the

1Relatedly, Liang, 2021 study the optimal rate of convergence of a general class of adversarial
methods and particularizes its findings to GMM/SMM estimation. Our work differs from his in that
we characterize the finite sample bias of AMM and show it is smaller than that of otpimally–weighted
GMM/SMM.
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distribution of zi. Within this set of models, we consider GMM and GEL estimators,
which we describe below.

2.1 GMM estimation

A widely used estimator is the two–step GMM estimator of Hansen (1982). To describe
it, let gi (θ) ≡ g (xi; θ) , ĝ (θ) ≡ n−1

∑
gi (θ) and Ω̂ (θ) ≡ n−1

∑
gi (θ) gi (θ)

′. Also, let
θ̃ be the one–step GMM estimator, given by θ̃ = argminθ∈Θ ĝ (θ)

′W−1ĝ (θ) where Θ
denotes the parameter space, and W = Im. The two–step GMM estimator is given by

θ̂GMM = argmin
θ∈Θ

ĝ (θ)′ Ω̂
(
θ̃
)−1

ĝ (θ)

We also consider the continuous–updating estimator (CUE) of Hansen, Heaton,
and Yaron (1996), which is analogous to GMM except that the objective function is
simultaneously minimized over θ in Ω̂ (θ)−1. It is given by

θ̂CUE = argmin
θ∈Θ

ĝ (θ)′ Ω̂ (θ)−1 ĝ (θ)

2.2 GEL estimation

A second set of estimators is the generalized empirical likelihood (GEL) estimators
(from which CUE estimator is a particular case). These estimators solve a min–max
problem, and are described by a function ρ (v) of a scalar v, which is concave on its
domain V , an open interval containing zero. If we define the admissible set in the inner
maximization as B̂n (θ) = {λ : λ′gi (θ) ∈ V , i = 1, . . . , n}, then the GEL estimator is the
solution to a saddle point problem

θ̂GEL = argmin
θ∈Θ

sup
λ∈B̂n(θ)

n∑
i=1

ρ (λ′gi (θ)) (1)

As mentioned before, GEL nests different estimators, by coosing ρ appropiately:
ρ (v) = log (1− v) and V = (−∞, 1) delivers the empirical likelihood (EL) estimator;
ρ (v) = −ev describes the exponential tilting (ET) estimator, and the case of quadratic
ρ (v) corresponds to CUE.

3 The AMM estimator
Our estimator uses two sources of inputs: Observations from the true data (which are
related to the moment conditions), denoted by g (θ) ≡ {gi (θ)}ni=1, and some random
draws, g̃ ≡ {g̃i}mi=1. Throughout this paper we’ll let g̃i = νεi, with ϵ ∼ N (0, 1). 2

Moreover, we denote the stacked inputs as X (θ) =
(
g (θ)′ , g̃′)′. In addition to X (θ),

2However, any generator with E [g̃i] = 0 would work.
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there’s also a binary output variable d = {di}n+m
i=1 , which reflects whether an observation

comes from the true data (di = 1) or not (di = 0).
The AMM estimator involves two models, a discriminator D and a generator G.

These models, in turn, compete over the loss through a min–max problem: On the one
hand, D uses (X (θ) ,d) to solve a classification problem by estimating the probability
that a given observation comes either from the true data or not, in the same way as
Logit regression. On the other hand, G seeks to confuse D, so that it’s incapable of
distinguishing true and random observations. To do so, G is allowed to choose θ.

At a broad level, our estimator can be described as the solution to the following
optimization problem

min
θ∈Θ

{
max
D∈D

1

n

n∑
i=1

logD (gi (θ)) +
1

m

m∑
i=1

log (1−D (g̃i))

}

where D is some family of discriminators. In principle, D could be very rich, case
in which the discriminator may be able to leverage on many features of the likelihood.
(KMP), for example, focus their attention on models with vast heterogeneity, and con-
sider a sieve of neural networks for efficient estimation. As hinted before, however, in
this paper we’ll focus on the family of logistic discriminators

D ≡
{
D : D (x) = Λ (λ′x) , λ ∈ Rd

}
where Λ (t) ≡ (1 + e−t)

−1. This restriction allows us to better study its finite–sample
properties, and thus we can describe the AMM estimator as

θ̂AMM = argmin
θ∈Θ

{
max
λ∈Rd

1

n

n∑
i=1

log Λ (λ′gi (θ)) +
1

m

m∑
i=1

log (1− Λ (λ′g̃i))

}

3.1 The Objective function

The motivation for this loss function can be stated as follows: Suppose we want to
describe the probability of a binary outcome. In particular, we are interested in whether
the observation i comes from the true data or not. We proceed by parametrizing the
probability with the Logistic function: Pr (i true) = Pr (di = 1) = Λ (λ′g (xi, θ)), and
use the features g (θ) as regressors to solve this classification problem (for a fixed θ).
In such case, the likelihood is

L =
n+m∏
i=1

Λ (λ′g (x, θ))
di [1− Λ (λ′g (x̃i (θ) , θ))]

1−di

Our loss function is just the log–likelihood in that case.
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3.2 The First Order Conditions

We can also build intuition for the estimator by considering the FOC of the inner
maximization (D’s problem) for a given θ:

1

n

n∑
i=1

[1− Λ (λ′gi (θ))] gi (θ) =
1

m

m∑
i=1

Λ (λ′g̃i) g̃i

The idea is that D searches for the value of λ that matches the weighted av-
erages of gi (θ) and g̃i. Under correct specification of the moment conditions, we
have E [g (xi, θ0)] = 0, so λ (θ0) = 0 would be a solution. In fact, by concavity of
the objective function with respect to λ, it is the only solution. In that case, since
Λ (0) = 1− Λ (0) = 1/2, the FOC boils down to

1

n

n∑
i=1

g (zi, θ0) =
1

m

m∑
i=1

g̃i ≃ 0

so that the AMM estimator enforces the moment conditions. Finally, and as will be
laid out below, AMM can be seen as a GEL estimator with a particular choice of the
function ρ: ρ(v) = log Λ(v), log [1− Λ(v)]. However, the AMM estimator circumvents
computational issues that arise in GEL estimators due to the nature of the constrained
optimization problem. In AMM we do not need to restrict λ in any way and solving
the inner maximization problem amounts to estimate a standard (and convex!) logistic
regression model.

3.3 A simple example – OLS

As an example, consider the case of a linear regression model

yi = β′xi + ηi

We are interested in β, and our moment condition is E(xi(yi − βxi)) = 0. In this
case, our dataset would be

(X (θ) ,d) =



x1 (y1 − β′x1) 1
x2 (y2 − β′x2) 1

...
...

xn (yn − β′xn) 1
νε1 0
νε2 0
...

...
νεm 0


and proceed to estimation. We consider a simple case where xi ∼ N (µx, σx) and

ηi ∼ N (0, 1). Moreover, we fix ϵi ∼ N (0, 1) and work with different values of ν to study
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how different values of the dispersion coeffcient may impact estimation. In particular,
we run S = 500 simulations of size N = 200.

σ Bias STD RMSE

OLS – 0.001 0.076 0.076
AMM 0 0.001 0.076 0.076
AMM 0.05 0.001 0.076 0.076
AMM 0.1 0.001 0.077 0.077
AMM 0.5 0 0.085 0.085
AMM 1 -0.001 0.107 0.107

Table 1: 500 simulations, sample size = 200

For this simple example, results remain unchanged. However, as we will see later
on, this is not a general result.

4 Simulation Exercises
In this section, we present several applications that will highlight the finite–sample
performance of the AMM estimator in multiple frameworks: First, we consider the
model in Altonji and Segal (1996). This is a natural starting point, since it’s the
first paper that showed that stacking many moment conditions may yield poor finite–
sample properties in optimally–weighted procedures (due to the fact that the same
data is used both for estimating the moment conditions and the weighting matrix).
As a second example, we consider the estimation of the autorregresive coefficient in a
dynamic panel data model with the moment conditions described in Arellano and Bond
(1991). We conclude this section with an application of the simulation–based AMM:
We estimate a DSGE model by matching impulse–response functions in the model and
the data.

4.1 Altonji–Segal (1996)

Altonji and Segal (1996) consider a panel of individuals (i = 1, . . . , N) observed across
T periods. In their model, an observation from agent i is xi = (xi1, xi2, . . . , xiT )

′. More-
over, observations are independent across (i, t) and all have equal mean and variance,
E [xit] = µ, E

[
(xit − µ)2

]
= σ2.

Since our focus is to estimate variance, we look at the case with µ = 0 and σ2 = 1.
The set of moment conditions are the T cross–sectional variances (linear in σ2):
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g (xi, θ) =


x2i1 − σ2

x2i2 − σ2

...
x2iT − σ2


In this example, it can be shown that GMM is equivalent to OLS estimator of

s2t = θ + ηt, where s2t = n−1
∑n

i=1 x
2
it

In what follows, we consider different parametric distributions of the data in order
to assess the robustness of the AMM estimator with normal errors. We also consider
different values for (N, T ) and different dispersion coefficients for the AMM estimator
ν = (0, 0.05, 0.1, 0.5, 1)

Results

Here we present our simulation results. In the following table, we present results
for bias and RMSE for GMM and AMM. In particular, we consider N = 500 and
T = 5, 10, 15, 20, 30 (which determines the number of moment conditions). For the
DGPs, we consider the Student and Log–Normal distributions3. In the following table,
each column represents a different value of T . We present results for various cases of
GMM: 1–step, 2–step, iterated (IT), continuous–updating (CUE), and diagonal (sets
off-diagonal elements of the weighting matrix in the 2–step case to zero).

ν T=1 T=5 T=10 T=15 T=20 T=30

0 0.006 -0.011 -0.014 -0.015 -0.016 -0.016
0.05 0.006 -0.009 0.008 0.004 -0.002 -0.003

AMM 0.1 0.006 -0.009 -0.012 -0.011 -0.013 -0.01
0.5 0.006 -0.01 -0.012 -0.014 -0.014 -0.014
1 0.007 -0.007 -0.009 -0.01 -0.011 -0.011

1–step -0.003 0.001 0 0 -0.001 0
2–step -0.003 -0.038 -0.042 -0.044 -0.046 -0.045

GMM IT -0.003 -0.038 -0.042 -0.044 -0.046 -0.045
CUE -0.003 -0.039 -0.042 -0.044 -0.046 -0.045

Diagonal W -0.003 -0.039 -0.042 -0.044 -0.046 -0.045

Table 2: Bias based on 500 simulations, sample size = 500. Student–t with 3 degrees
of freedom. ν denotes the noise coefficient of the AMM estimator

3more results can be found in the appendix
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ν T=1 T=5 T=10 T=15 T=20 T=30

0 -0.006 -0.058 -0.236 -0.324 -0.28 -0.159
0.05 -0.006 -0.049 -0.097 -0.088 -0.063 -0.039

AMM 0.1 -0.006 -0.017 -0.091 -0.11 -0.073 -0.048
0.5 -0.006 0.003 -0.088 -0.11 -0.117 -0.112
1 -0.006 -0.052 -0.096 -0.108 -0.111 -0.116

1–step -0.003 -0.002 -0.013 -0.006 -0.007 -0.006
2–step -0.003 -0.209 -0.236 -0.238 -0.243 -0.247

GMM IT -0.003 -0.209 -0.236 -0.238 -0.243 -0.247
CUE -0.003 -0.211 -0.24 -0.242 -0.247 -0.253

Diagonal W -0.003 -0.211 -0.24 -0.242 -0.247 -0.253

Table 3: Bias based on 500 simulations, sample size = 500. Log–Normal distribution.
ν denotes the noise coefficient of the AMM estimator

From this first of results, we see in the case of the Student–t, all AMM estimators
regardless of ν display at most 0.01 of bias. GMM estimators, on the other hand,
display consistently a bias that is five times larger (except for 1–step GMM, which
we already discussed is the MLE estimator in this setting). Moving on to the more
challenging case of the Log–Normal distribution, we see that AMM’s performance vary
with ν. In particular, we see that small but strictly positive values of ν (0.05 and 0.1)
yield parameter estimates that have almost no bias. In contrast, most GMM estimators
display severe bias in this case, which again is almost five times larger than AMM.

ν T=1 T=5 T=10 T=15 T=20 T=30

0 0.059 0.026 0.022 0.021 0.021 0.019
0.05 0.059 0.048 0.133 0.113 0.084 0.07

AMM 0.1 0.059 0.047 0.047 0.051 0.04 0.048
0.5 0.059 0.025 0.021 0.02 0.019 0.019
1 0.059 0.024 0.019 0.017 0.016 0.015

1–step 0.121 0.054 0.038 0.032 0.028 0.024
2–step 0.121 0.06 0.053 0.052 0.052 0.049

GMM IT 0.121 0.06 0.053 0.052 0.052 0.049
CUE 0.121 0.06 0.053 0.052 0.052 0.05

Diagonal W 0.121 0.06 0.053 0.052 0.052 0.05

Table 4: RMSE based on 500 simulations, sample size = 500. Student–t with 3 degrees
of freedom. ν denotes the noise coefficient of the AMM estimator
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ν T=1 T=5 T=10 T=15 T=20 T=30

0 0.169 0.203 0.348 0.415 0.36 0.197
0.05 0.169 0.222 0.181 0.22 0.267 0.282

AMM 0.1 0.169 0.261 0.186 0.171 0.247 0.263
0.5 0.169 0.296 0.185 0.154 0.151 0.159
1 0.169 0.214 0.159 0.128 0.13 0.127

1–step 0.369 0.198 0.133 0.104 0.099 0.093
2–step 0.369 0.238 0.25 0.247 0.25 0.252

GMM IT 0.369 0.238 0.25 0.247 0.25 0.252
CUE 0.369 0.241 0.254 0.251 0.255 0.258

Diagonal W 0.369 0.241 0.254 0.251 0.255 0.258

Table 5: RMSE based on 500 simulations, sample size = 500. Log–Normal distribution.
ν denotes the noise coefficient of the AMM estimator

Moving on to the second set of results, we see that, for the Student–t case, the
performance of both sets of estimators is quite similar, except for AMM with ν = 1.
This last case provides an important insight: The choice of the dispersion coefficient
entails a bias–variance tradeoff. In particular, larger values of ν reduce the variance of
the estimator at the expense of some bias inflation.

4.2 Dynamic Panel Data Model

Next, we consider the following dynamic panel data model,

Yit = ρYit−1 + αi + ϵit

where αi, ϵit
iid∼ N(0, 1). Our parameter of interest is θ = ρ. For estimation, we consider

the moment conditions from Arellano and Bond (1991), which require differencing out
the fixed effects:

∆Yit = ρ∆Yit−1 +∆ϵit

and use the set of lagged levels and differences as instruments. This procedure then
yields the following moment conditions:

gL (Yi, t, θ) = Y t−2
i · (∆Yi,t − θ∆Yi,t−1)

gD (Yi, t, θ) = ∆Y t−2
i · (∆Yi,t − θ∆Yi,t−1)

where Y s
i ≡ (Yi,1, Yi,2, . . . , Yi,s) and the dot product (·) represents an element–by–

element multiplication of the vector Y t−2
i with the scalar (∆Yi,t − θ∆Yi,t−1). Moreover,

these moment conditions are defined for t ≥ 3. This, in turn, implies that moment
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conditions increase at a quadratic rate in T , which makes this also a good framework to
test our estimator. For this exercise, we consider a sample size of N = 500 and different
values of the autoregressive coefficient ρ = (0.7, 0.9, 0.95) and of T = (10, 15, 20)

Results

Below we present the estimation results for the bias and RMSE forN = 500 observations
over S = 500 simulations. The main insight to take from this exercise is that, first,
a small amount of noise is preferred for an optimal performance of AMM. Second,
and most importantly, AMM improves its performance as we increase the number of
moment conditions, whereas GMM’s performance is clearly hurt as we increase T .

ν T=10 T=15 T=20

GMM 1–step -0.249 -0.306 -0.377
GMM 2–step -0.054 -0.101 -0.186
AMM 0 -0.029 -0.012 -0.207
AMM 0.05 -0.028 -0.012 -0.135

ρ = 0.7 AMM 0.1 -0.029 -0.012 -0.025
AMM 0.5 -0.039 -0.026 -0.007
AMM 1 -0.058 -0.046 -0.021

GMM 1–step -0.556 -0.636 -0.649
GMM 2–step -0.303 -0.371 -0.426
AMM 0 -0.177 -0.079 -0.063

ρ = 0.9 AMM 0.05 -0.175 -0.077 -0.038
AMM 0.1 -0.177 -0.079 -0.027
AMM 0.5 -0.211 -0.12 -0.057
AMM 1 -0.26 -0.168 -0.09

GMM 1–step -0.82 -0.809 -0.86
GMM 2–step -0.679 -0.659 -0.739
AMM 0 -0.495 -0.27 -0.165

ρ = 0.95 AMM 0.05 -0.491 -0.266 -0.153
AMM 0.1 -0.497 -0.271 -0.159
AMM 0.5 -0.544 -0.355 -0.235
AMM 1 -0.593 -0.443 -0.34

Table 6: Bias based on 500 simulations, sample size = 500. ν denotes the noise coeffi-
cient of the AMM estimator
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ν T=10 T=15 T=20

GMM 1–step 0.293 0.332 0.396
GMM 2–step 0.076 0.116 0.2
AMM 0 0.048 0.03 0.285
AMM 0.05 0.048 0.03 0.23

ρ = 0.7 AMM 0.1 0.048 0.031 0.101
AMM 0.5 0.061 0.043 0.028
AMM 1 0.083 0.064 0.044

GMM 1–step 0.656 0.691 0.682
GMM 2–step 0.387 0.431 0.459
AMM 0 0.217 0.095 0.177

ρ = 0.9 AMM 0.05 0.215 0.093 0.113
AMM 0.1 0.216 0.096 0.047
AMM 0.5 0.25 0.137 0.076
AMM 1 0.309 0.191 0.113

GMM 1–step 0.914 0.863 0.894
GMM 2–step 0.776 0.724 0.779
AMM 0 0.611 0.363 0.304

ρ = 0.95 AMM 0.05 0.608 0.363 0.29
AMM 0.1 0.612 0.366 0.298
AMM 0.5 0.64 0.43 0.321
AMM 1 0.677 0.51 0.436

Table 7: RMSE based on 500 simulations, sample size = 500. ν denotes the noise
coefficient of the AMM estimator
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5 Theory
Asymptotic properties of the AMM estimator were first derived by Kaji, Manresa,
and Pouliot (2020), providing conditions for consistency and asymptotic normality.
Moreover, they showed that AMM is asymptotically equivalent to optimally–weighted
SMM. In this section, we will derive this result under weaker conditions, leveraging in
the link between AMM and GEL estimators.

The intuition for the asymptotic equivalence with SMM can be seen from the FOC
of the discriminator, which emphasizes that D searches for the value of λ that matches
the weighted averages of g (xi, θ) and g (x̃i (θ) , θ). Under correct specification of the
moment conditions, we have E [g (xi, θ0)] = E [g (x̃i (θ0) , θ0)], so λ (θ0) = 0 would be a
solution. In fact, by concavity of the objective function with respect to λ, it is the only
solution. In that case, since Λ (0) = 1− Λ (0) = 1/2, the FOC boils down to

1

n

n∑
i=1

g (xi, θ0) =
1

m

m∑
i=1

g (x̃i (θ0) , θ0)

so that θ̂AMM will indeed match the two sets of moments.

5.1 The link between AMM and GEL estimators

Recall that the GEL estimator is the solution to the saddle point problem

θ̂GEL = argmin
θ∈Θ

{
sup

λ∈B̂n(θ)

n∑
i=1

ρ (λ′gi (θ))

}

The AMM estimator, on the other hand, solves

θ̂AMM = argmin
θ∈Θ

{
max
λ∈Rd

1

n

n∑
i=1

log Λ (λ′g (xi, θ)) +
1

m

m∑
i=1

log (1− Λ (λ′g (x̃i (θ) , θ)))

}

In what follows, we will state conditions for consistency and asymptotic normality,
which are necessary for stochastic expansions. Since the two versions of the estimators
require slightly different sets of assumptions, we will first characterize the ones that are
shared by both, and then develop each in more detail.

5.2 Assumptions and Results

In what follows, we will provide conditions for consistency, asymptotic normality and
existence of the stochastic expansion for AMM estimators. For consistency, we require
only standard assumptions
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Assumption 1 (a) θ0 ∈ Θ is the unique solution to E [g (x, θ)] = E
[
g
(
xθ, θ

)]
(b) Θ is

compact; (c) g (x, θ) is continuous at each θ ∈ Θ with probability one; (d) E [supθ∈Θ ∥g (x, θ) ∥α] <
∞ for some α > 2; (e) Ω is nonsingular.

Theorem 5.1 If assumption A1 is satified, then θ̂
p→ θ0

Additional assumptions are needed for asymptotic normality:

Assumption 2 (a) θ0 ∈ int (Θ); (b) g (x, θ) is continuously differentiable in a neigh-
borhood N of θ0 and E [supθ∈N ∥∂gi (θ) /∂θ′∥] <∞; (c) rank (G) = p.

Theorem 5.2 If assumptions A1 and A2 are satisfied, moment–based AMM

√
n(θ̂ − θ0)

D−→ N (0,Σ)

Moreover, simulation–based AMM is asymptotically equivalent to SMM

√
n(θ̂ − θ0)

D−→ N (0, (1 + τ)Σ)

where τ = n
m

The reason we don’t need to impose additional assumption is that the particular
structure of GAN with a logistic discriminator guarantees a good behavior of our prob-
lem.

Consistency and asymptotic normality are necessary conditions for stochastic ex-
pansions, the device to analyze finite–sample properties of our estimator. Under further
additional assumptions, the AMM estimator admits the following expansion:

√
n
(
θ̂ − θ0

)
= ψ̃ +Q1

(
ψ̃, ã, F0

)
/
√
n+Q2

(
ψ̃, ã, b̃, F0

)
/n+Rn

where Q1 is quadratic in its first two arguments, Q2 is cubic in its first three argu-
ments, and Rn = Op

(
n−3/2

)
. The particular expression for this expansion is given in

the appendix, but the asymptotic (higher order) bias formula is given by

Bias(θ̂) = E [Q1 (ψi, ai, F0)] /n

The specific assumptions required for this result can be found in the appendix. The
way we are able to prove the above results is by casting the AMM estimator as a
simulation–based GEL estimator. With this, we leverage on the vast set of results in
Newey and Smith (2004) to arrive to our theoretical results.
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6 Conclusion
In this paper, we investigated properties of the AMM estimator for models charac-
terized by moments conditions. We describe the intuition behind the estimator, and
provided asymptotic as well as finite sample results. We used stochastic expansions to
characterize the finite–sample properties of AMM. In particular, we showed that AMM
is asymptotically equivalent to optimally–weighted GMM, but it displays better finite
performance. In the second part of the paper, we put our estimator to work under dif-
ferent frameworks to illustrate its performance. In particular, we showed that, although
AMM and optimally–weighted SMM are asymptotically equivalent, their performance
differs in small samples.
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A Asymptotic Normality
In what follows, we’ll derive expressions for the asymptotic distribution of the AMM
estimator. In general, we denote

Σ =
(
G′Ω−1G

)−1
, H = ΣG′Ω−1

P = Ω−1 − Ω−1GΣG′Ω−1

Moreover, we’ll use the following results:

HΩH ′ = Σ, PΩH ′ = 0, PΩP = P

A mean–value expansion of the FOC gives

0 = −
(

0
ĝ (θ0)− νϵ̂

)
+M (φ̂− φ0)

where

M =

 0
∑n

i=1 ρ
D
1

(
λ̂′ĝi

)
Gi

(
θ̂
)′
/n∑n

i=1 ρ
D
1

(
λ
′
ĝi

)
Gi

(
θ
)
/n

∑n
i=1 ρ

D
2

(
λ
′
ĝi

)
gi
(
θ
)
ĝ′i/n


+

(
0 0

0
∑m

j=1 ρ
S
2

(
λ
′
νϵj

)
ν2ϵjϵ

′
j/m

)

where the last term is the additional piece from the random draws, with the property
that

∑m
j=1 ρ

S
2

(
λ̄′νϵj

)
ν2ϵjϵ

′
j/m → ν2I as m → ∞. Moreover, we have that M → M

with

M = −
(

0 G′

G ΩM

)
, M−1

M = −
(

−ΣM HM

H ′
M PM

)
where

ΩM = Ω+ ν2I, ΣM =
(
G′Ω−1

M G
)−1

, HM = ΣMG
′Ω−1

M

PM = Ω−1
M − Ω−1

M GΣMG
′Ω−1

M

Under standard assumptions, we have that

√
n

(
ĝ
νϵ̂

)
−→ N

((
0
0

)
,

(
Ω 0
0 τν2I

))
Under this framework, increasing the number of synthetic observations do not improve
accuracy, since we already have (µϵ, σ

2
ϵ ) = (0, 1). We thus restrict to the case where

m = n, so that τ = 1. By means of Slutsky’s Theorem, we get
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√
n (ĝ − νϵ̂) −→ N (0,ΩM)

which implies that

√
n (φ̂− φ0) =M−1

(
0√

n (ĝ − νϵ̂)

)
+ op (1)

and thus

√
n (φ̂− φ0) −→ N (0, diag (ΣM , PM))

Moreover, the case with ν = 0 is asymptotically equivalent to optimally–weighted
GMM, since ΩM (ν = 0) = Ω so that ΣM (ν = 0) = (G′Ω−1G)

−1

B Stochastic expansion for AMM

B.1 Taylor Expansion

The stochastic expansion for AMM is similar to Newey and Smith (2004), Lemma A4.
We start with the following notation:

Mj = E [∂2m (x, γ0) /∂γj∂γ] , Mjk = E [∂3m (x, γ0) /∂γk∂γj∂γ]
A (x) = ∂m (x, γ0) /∂γ −M, Bj (x) = ∂2m (x, γ0) /∂γj∂γ −Mj

ψ (x) = −M−1m (x, γ0) , a (x) = vec (A (x)) , b (x) = vec [B1 (x) , . . . , Bq (x)]

Also, for any operator T (x; γ), let

T̂ (γ) ≡ n−1
∑

T (xi; γ) , T̃ (γ) ≡ n−1/2T̂ (γ)

T (γ) ≡ E [T (x; γ)] , T ≡ T (γ0)

A Taylor expansion with Lagrange remainder gives

0 =m̂+ M̂ (γ̂ − γ0) +

q∑
j=1

(γ̂j − γj0)
[
∂M̂ (γ0) /∂γj

]
(γ̂ − γ0) /2

+

q∑
j,k=1

(γ̂j − γj0) (γ̂k − γk0)
[
∂2M̂ (γ) /∂γk∂γj

]
(γ̂ − γ0) /6

Adding and substracting in the second and third terms gives

γ̂ − γ0 = n−1/2ψ̃ −M−1
(
n−1/2Ã

)
(γ̂ − γ0)

−M−1

q∑
j=1

(γ̂j − γj0)
[
Mj + n−1/2B̃j

]
(γ̂ − γ0) /2

−M−1

q∑
j,k=1

(γ̂j − γj0) (γ̂k − γk0)Mjk (γ̂ − γ0) /6 +Op

(
n−2
)
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which follows from the fact that

−M−1m̂ = n−1/2
[
n−1/2

∑(
−M−1m (xi; γ0)

)]
= n−1/2ψ̃(

M̂ −M
)
= n−1/2

[
n−1/2

∑
(∂m (xi; γ) /∂γ −M)

]
= n−1/2Ã

∂M̂ (γ0) /∂γj ±Mj =Mj + n−1/2
[
n−1/2

∑(
∂2M (γ0) /∂γj∂γ −Mj

)]
=Mj + n−1/2B̃j∥∥∥∂2M̂ (γ) /∂γk∂γj −Mjk

∥∥∥ = Op

(
n−1/2

)
As all the terms except n−1/2ψ̃ are Op (n

−1) , it follows that

γ̂ − γ0 = n−1/2ψ̃ +Op

(
n−1
)

Next, since the last three terms (including the remainder) are Op

(
n−3/2

)
, and replacing

γ̂−γ0 by n−1/2ψ̃ in the second and third terms also generates an error that is Op

(
n−3/2

)
,

we obtain

γ̂ − γ0 = n−1/2ψ̃ − n−1M−1

[
Ãψ̃ +

q∑
j=1

ψ̃jMjψ̃/2

]
+Op

(
n−3/2

)
= n−1/2ψ̃ + n−1Q1

(
ψ̃, ã

)
+Op

(
n−3/2

)
Finally, replacing γ̂−γ0 in the second and third terms by the above expression, and

in the fourth and fifth terms by n−1/2ψ̃ gives

n−1/2 (γ̂ − γ0) = ψ̃ + n−1/2Q1

(
ψ̃, ã, F0

)
+ n−1Q2

(
ψ̃, ã, b̃, F0

)
+Rn

where Q1 is quadratic in its first two arguments, Q2 is cubic in its first three argu-
ments, and Rn = Op

(
n−3/2

)
. In particular

Q1

(
ψ̃, ã

)
= −M−1

[
Ãψ̃ +

∑q
j=1 ψ̃jMjψ̃/2

]
Q2

(
ψ̃, ã, b̃

)
= −M−1

[
ÃQ1

(
ψ̃, ã, b̃

)
+
∑q

j,k=1 ψ̃jψ̃kMjkψ̃/6
]

−M−1
∑q

j=1

{
ψ̃jMjQ1

(
ψ̃, ã

)
+Q1j

(
ψ̃, ã

)
Mjψ̃ + ψ̃jB̃jψ̃

}
/2

B.2 Characterization for AMM

Denote φ = (λ, θ) , Gi (θ) = ∂gi(θ)
∂θ

and mℓ (xi, φ) , ℓ = T, S denote each of the FONC
terms of the AMM estimator,

mℓ
(
xℓi (θ) , φ

)
= ρℓ1 (λ

′gi (θ))

(
Gℓ

i (θ)
′ λ

gℓi (θ)

)
with ρT (x) ≡ log Λ (x) , ρS (x) ≡ log (1− Λ (x)) and Λ (x) = (1 + e−x)

−1
. We can

write the FONC for AMM similarly as the ones for GEL estimators in Newey and
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Smith (2004), the only difference being that the appropriate moment condition is now
the sum of the true and synthetic moments

m (xi, xi (θ) , φ) = mT (xi, φ) +mS (x̃i (θ) , φ)

where ρT (0) = 1− ρS (0) = 1/2 Moreover, from Newey and Smith (2004), Theorem
4.2, we have that

E [A (zi)ψi] =

(
E [G′

iPgi]
E [GiHgi + gig

′
iPgi]

)
q∑

j=1

MjE [ψiψ
′
i] ej/2 =

p∑
j=1

Mj[Σ, 0]
′ej/2 +

m∑
j=1

Mj+p[0, P ]
′ej/2

= −
p∑

j=1

(
0

E
[
Gj

i

]
Σej/2

)
−

m∑
j=1

(
E [G′

iejg
′
i + gijG

′
i]Pej/2

0

)
=

(
−E [G′

iPgi]
−a

)
thus, Bias(θ̂) are the first p elements of

E [Q1 (ψi, ai, F0)] /n = −M−1 (−a+ E [GiHgi] + E [gig
′
iPgi]) /n

B.3 Further details

Let ρℓi (x) ≡ ∂iρ (x) /∂xi, ℓ = (T, S) denote the ith derivative of ρj, and ρℓi = ρℓi (0).
Denote also vℓi (φ) ≡ λ′gℓi (θ), hℓi (φ) ≡ ∂vℓi (φ) /∂φ, so each FONC term can be
expressed as mℓ

i (φ) = ρℓ1
(
vℓi (φ)

)
hℓi (φ). From this characterization we have that

∂mi (φ) /∂φ = ρ2 (vi (φ))hi (φ)hi (φ)
′ + ρ1 (vi (φ)) ∂hi (φ) /∂φ

∂2mi (φ) /∂φj∂φ = ρ3 (vi (φ))hi (φ) jhi (φ)hi (φ)
′ + ρ2 (vi (φ)) ∂

[
hi (φ)hi (φ)

′] /∂φj

+ ρ2 (vi (φ))hi (φ)j ∂hi (φ) /∂φ+ ρ1 (vi (φ)) ∂
2hi (φ) /∂φj∂φ

∂3mi (φ) /∂φk∂φj∂φ = ρ4 (vi (φ))hi (φ)k hi (φ)j hi (φ)hi (φ)
′ + ρ3 (vi (φ)) ∂

[
hi (φ)j hi (φ)hi (φ)

′
]
/∂φk

+ ρ3 (vi (φ))hi (φ)k ∂
[
hi (φ)hi (φ)

′] /∂φj + ρ2 (vi (φ)) ∂
2
[
hi (φ)hi (φ)

′] /∂φk∂φj

+ ρ3 (vi (φ))hi (φ)k hi (φ)j ∂hi (φ) /∂φ+ ρ2 (vi (φ)) ∂
[
hi (φ)j ∂hi (φ) /∂φ

]
/∂φk

+ ρ2 (vi (φ))hi (φ)k ∂
2hi (φ) /∂φj∂φ+ ρ1 (vi (φ)) ∂

3hi (φ) /∂φk∂φj∂φ

which are the key terms that enter the stochastic expansion.
Before we continue, let us impose the following normalization: ρℓ (x) = ρℓ (2x). In
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turn, this implies that

ρ1 ≡ ρS1 = −ρD1 = −1

ρ2 ≡ ρS2 = ρD2 = −1

ρ3 ≡ ρS3 = ρD3 = 0

ρ4 ≡ ρS4 = ρD4 = 2

so that the first two moments are normalized to unity, as in Newey and Smith (2004),
proof of Theorem 3.4, with the only difference on the sign of ρD1 . This will be taken
care of below.

We need to compute two terms: the one involving the true data, and the one
involving the random draws. We start by computing the terms of mD

i (φ0). Given our
normalization, the derivation of this term is exactly the same as in GEL.

The second term, which involves the random draws, is similar to mD
i terms in the

simulation–based approach; since neither involve θ, only few terms survive. We have
that, for u = k − p, t = j − p

hSi
(
hSi
)′
=

[
0 0
0 ν2ϵiϵ

′
i

]
(
hSi
)
j
· hSi

(
hSi
)′
=

[
0 0
0 ν3ϵijϵiϵ

′
i

]
j > p

(hi)k
(
hSi
)
j
· hSi

(
hSi
)′
= ν4ϵiuϵit

[
0 0
0 ϵiϵ

′
i

]
j, k > p

thus

∂mS
i (φ) /∂φ = −

[
0 0
0 ν2ϵiϵ

′
i

]
∂2mS

i (φ) /∂φj∂φ = 0

∂3mS
i (φ) /∂φk∂φj∂φ = 2ν2ϵiuϵit

[
0 0
0 ν2ϵiϵ

′
i

]
j, k > p

And recall that E [ϵiϵ
′
i] is just the identity matrix.

C AMM implementation
We now describe the procedure for AMM estimation. Before we begin, we must first
choose a distribution F for the synthetic observations {ϵi}ni=1. For simplicity, we choose
the standard normal, so F = N (0, 1), but any distribution such that E [ϵ] = 0,V [ϵ] = 1
would work. Moreover, we must choose an initial guess θ(0).
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1. Fix the random number generator by drawing a sample of i.i.d. shocks ϵi ∼ F
with the same size as the true data. Scale the shocks with ν to get our synthetic
data. These observations are held fix throughout iterations.

2. At each step s, construct the dataset

[
X(s)|d

]
=



1 g
(
x1, θ(s)

)′
1

1 g
(
x2, θ(s)

)′
1

...
...

...
1 g

(
xn, θ(s)

)′
1

1 νε′1 0
1 νε′2 0
...

...
...

1 νε′n 0


and run the discriminator to get λ(s).

3. Update each parameter θj j ≤ p using gradient descent: Construct new moment
observations

{
g
(
xi, θ

±
(s)

)}n

i=1
, where θ±j,(s) ≡ θj,(s) ± k(s). Here, k(s) is a tuning

parameter that describes the step size. We compute the numerical gradient of the
loss function as

∇̂L(s) =
Ln

(
θ+(s)

)
− Ln

(
θ−(s)

)
2k(s)

keeping fixed the discriminator’s parameters at λ(s).

4. If all numerical gradients are (close to) zero, stop. If not, update θ(s+1) = θ(s) +

η(s+1)∇̂L(s) and go back to step 2.

D Extension to simulation–based estimation
Often times with structural models, moment–based estimation is not possible. In such
cases, we proceed with simulated minimum–distance (SMD) estimation: We look for
parameter values such that moments in the data and the model are as close as possible.
To be precise, we start with some data {xi}ni=1, together with certain moments E [g (x)]
that we would like to be replicated by our model. Moreover, we can draw simulated
observations, {x̃i (θ)}mi=1, and we can construct model counterparts of g (xi), which will
be denoted as g (x̃i (θ)). In this case, the AMM estimator can be defined as

θ̂AMM = argmin
θ∈Θ

{
max
λ∈Rd

1

n

n∑
i=1

log Λ (λ′g (xi)) +
1

m

m∑
i=1

log (1− Λ (λ′g (x̃i (θ))))

}
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D.1 Asymptotics

A mean–value expansion of the FOC in this case gives

0 = −
(

0
ĝ − ĝ (x̃)

)
+MS (φ̂− φ0)

where ĝ (x̃) = m−1
∑m

i=1 g (x̃i (θ0)).
Since θ only enters when computing the simulated sample, we have that

MS =

(
0 0

0
∑n

i=1 ρ
D
2

(
λ
′
gi

)
gig

′
i/n

)

+

 0
∑m

i=1 ρ
S
1

(
λ
′
gθ̂i

)(
Gθ

i

)′
/m∑m

i=1 ρ
S
1

(
λ
′
gθ̂i

)
Gθ

i /m
∑m

i=1 ρ
S
2

(
λ
′
gθ̂i

)
gθi

(
gθ̂i

)′
/m


where gθi = g (x̃i (θ)) , G

θ
i =

∂g
∂x

(x̃i (θ)) · ∂x̃i

∂θ
(θ)

In this case, we have that MS →MS with

MS = −
(

0 G′

G 2Ω

)
, M−1

S = −
(

−2Σ H
H ′ P/2

)
As it’s standard in this case, we assume conditions such that

√
n

(
ĝ − γ (θ0)

ĝ (x̃)− γ (θ0)

)
−→ N

((
0
0

)
,

(
Ω 0
0 τΩ

))
so that √

n (ĝ − ĝ (θ0)) −→ N (0, (1 + τ) Ω)

Proceeding in the same way as before, we get that

√
n (φ̂− φ0) =M−1

S

(
0√

n (ĝ − ĝ (x̃))

)
+ op (1)

and so
√
n (φ̂− φ0) −→ N (0, (1 + τ) diag (Σ, P/4))

since

M−1
S AV

(√
n (ĝ − ĝ (θ0))

)
M−1

S =

(
(1 + τ)HΩH ′ (1+τ

2

)
HΩP(

1+τ
2

)
PΩH ′ (

1+τ
4

)
PΩP

)
= (1 + τ) diag (Σ, P/4)

We thus conclude that AMM is asymptotically equivalent to optimally–weighted
SMM.
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D.2 Stochastic Expansion

We start by computing the terms of mS
i (φ0). Note that since hi (φ0) = (0′, g′i)

′ and
ρ1 = ρ2 = −1, we get

∂mS
i (φ0) /∂φ = −

(
0 G′

i

Gi gig
′
i

)
Now let Gj

i = ∂2gi (θ0) /∂θj∂θ, gji = ∂gi (θ0) /∂θj, t = j − p for j > p, let et denote
the t th unit vector, and a t subscript denote the t th element of a vector. Then evaluate
at φ = φ0 to obtain

∂2mS
i (φ0) /∂φj∂φ = −

(
0 Gj′

i

Gj
i gji g

′
i + gig

j′

i

)
(j ≤ p)

= −
(
∂2 [e′tgi (θ0)] /∂θ∂θ

′ G′
ietg

′
i + gitG

′
i

gie
′
tGi + gitGi 0

)
(j > p)

Next, let Gjk
i = ∂3gi (θ0) /∂θk∂θj∂θ and gjki = ∂2gi (θ0) /∂θk∂θj. Then for the second

derivatives corresponding to θ, with j ≤ p and k ≤ p,

∂3mS
i (φ0) /∂φk∂φj∂φ = −

(
0 Gjk′

i

Gjk
i gjki g

′
i + gji g

k′
i + gki g

j′
i + gig

jk′
i

)
For the cross partial between λt and θj, with j ≤ p, k > p, and t = k − p,

∂3mS
i (φ0) /∂φk∂φj∂φ

= −
(

∂3git (θ0) /∂θj∂θ∂θ
′ G′

ietg
j′

i +Gj′

i etg
′
i +GitjG

′
i + gitG

j′
i

gji etGi + gietG
j
i +GitjGi + gitG

j
i −ρ3

[
Gitjgig

′
i + git

(
gji gi + gig

j′
i

)] )
For the second partial derivatives between λt and λu, with j > p, k > p, t = j − p, and
u = k − p

∂3mS
i (φ0) /∂φk∂φj∂φ =

(
−G′

iete
′
uGi −G′

ieue
′
tGi ρ3 (gitG

′
ieu + giuG

′
iet) g

′
i

ρ3gi (gite
′
uGi + giue

′
tGi) ρ4gitgiugig

′
i

)
−
(
git∂

2giu (θ0) /∂θ∂θ
′ + giu∂

2git (θ0) /∂θ∂θ
′ −ρ3gitgiuG′

i

−ρ3gitgiuGi 0

)
Then we compute the terms of the derivative for ℓ = D. Given that hDi does not

depend on parameters, only few terms survive. We have that, for u = k − p, t = j − p

hDi h
D
i
′ =

[
0 0
0 gig

′
i

]
(
hDi
)
j
· hDi

(
hDi
)′
=

[
0 0
0 gijgig

′
i

]
j > p

(
hDi
)
k

(
hDi
)
j
· hDi

(
hDi
)′
= giugit

[
0 0
0 gig

′
i

]
j, k > p
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thus

∂mD
i (φ) /∂φ = −

[
0 0
0 gig

′
i

]
∂2mD

i (φ) /∂φj∂φ = 0

∂3mD
i (φ) /∂φk∂φj∂φ = 2giugit

[
0 0
0 gig

′
i

]
j, k > p

Putting all together, we get

∂mi (φ0) /∂φ = −
(

0 G′
i

Gi gig
′
i + gDi

(
gDi
)′ )

∂2mi (φ0) /∂φj∂φ = −
(

0 Gj′
i

Gj
i gji g

′
i + gig

j′

i

)
(j ≤ p)

= −
(
∂2 [e′tgi (θ0)] /∂θ∂θ

′ G′
ietg

′
i + gitG

′
i

gie
′
tGi + gitGi 0

)
(j > p)

and

∂3mi (φ0) /∂φk∂φj∂φ = −
(

0 Gjk′
i

Gjk
i gjki g

′
i + gji g

k′
i + gki g

j′
i + gig

jk′
i

)
∂3mi (φ0) /∂φk∂φj∂φ = −

(
∂3git (θ0) /∂θj∂θ∂θ
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for each of the possible cases.

D.3 An application: Matching IRF of a DSGE model

We conclude the Monte Carlo simulations with a structural model. We borrow the
example from Guerron-Quintana, Inoue, and Kilian (2017), and focus on a small–scale
New Keynesian model, which serves as an illustrative example in the macro litera-
ture. This model consists of a Phillips curve, a Taylor rule, an investment– savings
relationship, and the exogenous driving processes zt and ξt

πt = κxt + βE (πt+1 | It−1)

Rt = ρrRt−1 + (1− ρr)ϕππt + (1− ρr)ϕxxt + ξt

xt = E (xt+1 | It−1)− σ (E (Rt | It−1)− E (πt+1 | It−1)− zt)

zt = ρzzt−1 + σzεzt
ξt = σrεrt
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where xt, πt and Rt denote the output gap, inflation rate, and interest rate, respec-
tively. The structural shocks εzt and εrt are assumed to be distributed N (0, 1). The
model parameters are the discount factor β, the intertemporal elasticity of substitution
1/σ, the probability α of not adjusting prices for a given firm, the elasticity of substitu-
tion across varieties of goods, θ, the parameter ω controlling disutility of labor supply;
ϕπ and ϕx capture the central bank’s reaction to changes in inflation and the output
gap, respectively, and κ = (1−α)(1−αβ)

α
ω+σ

σ(ω+θ)
.

In this model, inflation and real output do not react contemporaneously to the
monetary policy shock, ξt, but they do respond contemporaneously to a shock to the
investment-savings relationship, zt. These restrictions are required for us to be able
to identify the structural shocks of interest in the VAR model based on short-run
identifying restrictions. Given this informational constraint, household and firms form
expectations based on the information set It−1.

We focus on the estimation of one parameter only in the simulation study: The
probability of not adjusting prices, α, by matching the impulse responses of inflation
and of the interest rate with the remaining parameters set to their population values in
estimation. The population parameters in the data generating process are σ = 1, α =
0.75, β = 0.99, φπ = 1.5, φx = 0.125, ω = 1, ρr = 0.75, ρz = 0.90, θ = 6, σz = 0.30, σr =
0.20.

To proceed to estimation, we write the DSGE model in it’s state– space represen-
tation form,

xt = Axt−1 +Bϵt

yt = Cxt

where xt is a vector of state variables, εt is a vector that consists of the technology
shock and the monetary policy shock, and yt is a vector that consists of inflation and the
interest rate. Moreover, A, B and C are matrices of suitable dimensions. In turn, given
the parameter values, this system has an invertible moving average representation, so
we can write it as a VAR(∞), which may be approximated by a finite–order structural
VAR model. Finally, given our assumptions, the structural shocks can be recovered by
applying a lower triangular Cholesky decomposition to the residual covariance matrix
with the diagonals of the decomposition normalized to be positive.

Let Γj = E
(
yty

′
t−j

)
denote the population autocovariances implied by the state

space representation given a structural parameter value. Then the population parame-
ter values of the VAR(p) model fitted to data generated by the model may be expressed
as:
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Φ
[2p×2]

=


Γ0 Γ1 · · · Γp−1

Γ′
1 Γ0 · · · Γp−2
...

... . . . ...
Γ′
p−1 Γ′

p−2 · · · Γ0


−1 

Γ′
1

Γ′
2
...
Γ′
p


Σ

[2×2]
= Γ0 −

[
Γ1 Γ2 · · · Γp

]
× Φ

The population structural impulse responses can be written as functions of Φ and
Σ, so we can use {Γ0,Γ1, . . . ,Γp} as the moment conditions in AMM estimation. It’s
important to note that since we are matching the moments directly, the horizon is
irrelevant for our estimation.

D.3.1 Results

Here, we compare the results from our estimation and the bootstrap approach in
Guerron-Quintana, Inoue, and Kilian (2017) (they report two versions of their esti-
mator: one with a diagonal weighting matrix, and another with optimal weighting).

AMM Diagonal W Optimal W
T L Bias RMSE Bias RMSE Bias RMSE

100 2 -0.007 0.038 0.009 0.022 0.003 0.012
100 4 -0.011 0.077 0.011 0.022 0.004 0.013
100 6 -0.021 0.101 0.012 0.023 0.006 0.014
232 2 -0.001 0.021 0.004 0.015 0.001 0.007
232 4 -0.001 0.021 0.004 0.014 0.002 0.007
232 6 -0.002 0.024 0.005 0.014 0.002 0.008

Table 8: Based on 500 simulations. T denotes the number of time periods and L is the
SVAR lag length

From the previous table, we see that, even though the AMM estimator is not tai-
lored to this framework (as the bootstrap estimator of Guerron-Quintana, Inoue, and
Kilian (2017)), we can see that the performance of both is quite similar. Moreover, it’s
important to highlight that our procedure is much less computationally intensive, since
we don’t require computation of many bootstrap samples, as the other estimator does.
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