Production and Labor Networks

Ignacio Cigliutti

NYU Presentation

August 19 ${ }^{\text {th }}, 2022$

Introduction

- Fast growing literature on role of production networks across sectors to account for the role of idiosyncratic shocks on aggregate outcomes
- Acemoglu et al. (2012), Baqaee \& Farhi (2019, 2020), Bigio \& La'O (2020), Liu (2021)
- Other networks in the economy are also important!
- Acemoglu et al. (2015): Financial networks
- Winberry \& von Lehm (2021): Investment networks
- Lim (2018), Taschereau-Dumouchel (2022), Cardoza et al (2022): Firm-firm trade
- This paper: Study the role of the labor market network.
- How does the production economy react when we take into account costly and slow reallocation of factors of production?
- Pilossoph (2012): $\simeq 10 \%$ of unemployment volatility due to intersectoral frictions

J2) Transitions

Figure: Color scaled independently by row

Introduction

- The labor market network
- Features a lot of within-sector transitions
- Labor as a durable good
- Involves worker decision!
- How do production and labor networks interact?

What Ido

- Introduce production network structure in a multi-sector labor search model
- Key inputs
- $\kappa, p(\theta), q(\theta)$: Role of search frictions
- Ω : Input-Output matrix
- Ф: Worker's switching cost matrix
- Characterize the solution in a stationary environment
- Study the economy's reaction to shocks under different structures
- Standard models are nested within this framework

Environment

- Infinite-horizon, discrete-time
- n sectors with inter-sectoral input-output (1-O) linkages
- Firms: On each sector i, a continuum of single-worker firms

1. Search for a worker to produce (if vacant)
2. Source inputs from all sectors (if filled vacancy)

- Workers: Every period choose in which sector to work. Intersectoral J2] transitions are costly.
- All workers act as a family that consume an aggregate good (numéraire)

Timing

1. Firms - Search block

- There's a labor market on each sector i
- Matching function: $M_{i}(u, v)$
- Market tightness: $\theta_{i} \equiv v_{i} / u_{i}$
- Matching probabilities: $q\left(\theta_{i}\right), p\left(\theta_{i}\right)=\theta_{i} q\left(\theta_{i}\right)$
- Firms pay κ_{i} to post a vacancy and die with probability δ_{i}
- Firm's value functions

$$
\begin{aligned}
J_{i}(\mathbf{z}) & =\pi_{i}(\mathbf{z})-w_{i}(\mathbf{z})+\beta \mathbb{E}_{\mathbf{z}}\left[\left(1-\delta_{i}^{F}\left(\mathbf{z}^{\prime}\right)\right) J_{i}\left(\mathbf{z}^{\prime}\right)+\delta_{i}^{F}\left(\mathbf{z}^{\prime}\right) V_{i}\left(\mathbf{z}^{\prime}\right)\right] \\
V_{i}(\mathbf{z}) & =-\kappa_{i}+\beta \mathbb{E}_{\mathbf{z}}\left[q\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right) J_{i}\left(\mathbf{z}^{\prime}\right)+\left(1-q\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right)\right) V_{i}\left(\mathbf{z}^{\prime}\right)\right]
\end{aligned}
$$

- Measure of entrant/poster firms is pinned down by free entry $V_{i}=0$
- $\delta_{i}^{F}(\mathbf{z})$ is endogenous (takes into account JD from reallocation)

1. Firms - Search block

- Firm's value functions

$$
\begin{aligned}
J_{i}(\mathbf{z}) & =\pi_{i}(\mathbf{z})-w_{i}(\mathbf{z})+\beta \mathbb{E}_{\mathbf{z}}\left[\left(1-\delta_{i}^{F}\left(\mathbf{z}^{\prime}\right)\right) J_{i}\left(\mathbf{z}^{\prime}\right)+\delta_{i}^{F}\left(\mathbf{z}^{\prime}\right) V_{i}\left(\mathbf{z}^{\prime}\right)\right] \\
V_{i}(\mathbf{z}) & =-\kappa_{i}+\beta \mathbb{E}_{\mathbf{z}}\left[q\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right) J_{i}\left(\mathbf{z}^{\prime}\right)+\left(1-q\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right)\right) V_{i}\left(\mathbf{z}^{\prime}\right)\right]
\end{aligned}
$$

$-\pi_{i} \longrightarrow$ Value added (revenue net of intermediate input expenses)

- $\delta_{i}^{F} \longrightarrow$ Job destruction probability accounts for intersectoral mobility
- $w_{i} \longrightarrow$ Nash Bargaining

1. Firms - Technology

- Firms in sector i produce according to Cobb-Douglas technology

$$
y_{i}=z_{i}^{\frac{1}{1-\eta_{i}}} \xi_{i}\left[\prod_{j=1}^{n} x_{i j}^{\omega_{i j}}\right]^{\eta_{i}}
$$

- z_{i} is sector-specific TFP
- ξ_{i} is normalizing constant
- $x_{i j}$ denotes i 's demand for j 's output
- $\omega_{i j}$ are input shares
- η_{i} is degree of DRS

1. Firms - Input choice

- Firm's input choice is a static problem

$$
\pi_{i}(\mathbf{z}) \equiv \max _{\left\{x_{i j}\right\}_{j=1}^{n}}\left\{p_{i} y_{i}\left(\mathbf{x}_{i},\right)-\sum_{j=1}^{n} p_{j} x_{i j}\right\}
$$

- Output per worker

$$
y_{i}^{*}(\mathbf{z}) \equiv z_{i}\left[\prod_{j=1}^{n}\left(p_{i} / p_{j}\right)^{\omega_{i j}}\right]^{\gamma_{i}}, \quad \gamma_{i} \equiv \frac{\eta_{i}}{1-\eta_{i}}
$$

- Sector value added

$$
\pi_{i}(\mathbf{z})=\left(1-\eta_{i}\right) p_{i} y_{i}^{*}(\mathbf{z})
$$

- Profits depend on \mathbf{z} since TFP shapes prices and thus firm's cost structure

Timing for Workers

2. Workers - Value functions

- Workers can choose to move across sectors

$$
\begin{aligned}
W_{i}(\mathbf{z}) & =w_{i}+\beta \delta_{i} \mathbb{E}_{\mathbf{z}}\left[U\left(\mathbf{z}^{\prime}\right)\right] \\
& +\beta\left(1-\delta_{i}\right) \mathbb{E}_{\mathbf{z}}\left[\mathbb{E}_{\epsilon}\left\{\max \left\{W_{i}\left(\mathbf{z}^{\prime}\right)+\epsilon_{i}, \max _{\substack{ \\
\\
}}\left(\mathcal{W}_{j}\left(\mathbf{z}^{\prime}\right)-\varphi_{i j}^{E}+\epsilon_{j}\right)\right\}\right\}\right] \\
U(\mathbf{z}) & =b+\beta \mathbb{E}_{\mathbf{z}}\left[\mathbb{E}\left\{\max _{i \in \mathcal{I}}\left(\mathcal{W}_{i}\left(\mathbf{z}^{\prime}\right)-\varphi_{j}^{U}+\epsilon_{i}\right)\right\}\right] \\
\mathcal{W}_{i}(\mathbf{z}) & =p\left(\theta_{i}\right) \cdot W_{i}(\mathbf{z})+\left(1-p\left(\theta_{i}\right)\right) \cdot U(\mathbf{z})
\end{aligned}
$$

- Discrete choice problem, where \mathcal{W}_{j} is expected value of searching in sector j
- $\epsilon_{i} \sim G E V_{1}$ are preference shocks
- φ describe the switching costs across sectors

2. Workers - Choosing a sector

- Expected value of seaching in sector j

$$
\mathcal{W}_{j}(\mathbf{z})=p\left(\theta_{j}\right) \cdot W_{j}(\mathbf{z})+\left(1-p\left(\theta_{j}\right)\right) \cdot U(\mathbf{z})
$$

- Well-known result in discrete choice literature: $\epsilon_{i} \sim G E V_{1}$ yield probabilities

$$
\begin{aligned}
& s_{i j}^{E}(\mathbf{z})=\operatorname{Pr}(i \rightarrow j)= \begin{cases}\frac{e^{\mathcal{W}_{j}(\mathbf{z})-\varphi_{i j}^{E}}}{e^{W_{i}(\mathbf{z})}+\sum_{k \neq i}^{n} e^{\mathcal{W}_{k}(\mathbf{z})-\varphi_{i k}^{E}}} & i \neq j \\
\frac{e^{W_{i}}(\mathbf{z})}{e^{W_{i}(\mathbf{z})}+\sum_{k \neq i}^{n} e^{\mathcal{W}_{k}(\mathbf{z})-\varphi_{i k}^{E}}} & i=j\end{cases} \\
& s_{j}^{U}(\mathbf{z})=\operatorname{Pr}(U \rightarrow j)=\frac{e^{\mathcal{W}_{j}(\mathbf{z})-\varphi_{j}^{U}}}{\sum_{k=1}^{n} e^{\mathcal{W}_{k}(\mathbf{z})-\varphi_{k}^{U}}}
\end{aligned}
$$

- Relative values of being employed at each sector determines Pr (move)

2. Workers-Choosing a sector

- Transition probabilities from unemployment can be expressed as

$$
\begin{aligned}
s_{j} \cdot \frac{\exp (-U)}{\exp (-U)} & =\frac{\exp \left[p\left(\theta_{j}\right)\left(W_{i}-U\right)\right]}{\sum_{k} \exp \left[p\left(\theta_{k}\right)\left(W_{k}-U\right)\right]} \\
& =\frac{\exp \left[p\left(\theta_{j}\right) \alpha_{j} S_{j}\right]}{\sum_{k} \exp \left[p\left(\theta_{k}\right) \alpha_{k} S_{k}\right]}
\end{aligned}
$$

using the Nash bargaining solution: $W_{i}-U=\alpha_{i} S_{i}$.

- Same reasoning for $s_{i j}^{E}$ leads to

$$
s_{i j}^{E}= \begin{cases}\frac{\exp \alpha_{i} S_{i}}{\exp \alpha_{i} S_{i}+\sum_{k j} p\left(\theta_{j}\right) \alpha_{j} S_{j}} & i=j \\ \frac{\exp p\left(\theta_{j}\right) \alpha_{j} S_{j}}{\exp \alpha_{i} S_{i}+\sum_{k \neq i} p\left(\theta_{k}\right) \alpha_{k} S_{k}} & i \neq j\end{cases}
$$

2. Workers - Choosing a sector

- Using GEV trick, express worker's value functions as

$$
\begin{aligned}
W_{i} & =w_{i}+\beta\left(\delta_{i} \cdot U+\left(1-\delta_{i}\right) \cdot E W_{i}\right) \\
U & =b+\beta \cdot E W
\end{aligned}
$$

where

$$
\begin{aligned}
& E W=\mathbb{E}\left[\max _{k \in \mathcal{I}}\left\{\mathcal{W}_{k}-\varphi_{k}^{U}+\epsilon_{i}\right\}\right]=\sum_{k=1}^{n} s_{k}^{U} \cdot\left(\mathcal{W}_{k}-\varphi_{k}^{U}\right) \\
& E W_{i}=\mathbb{E}\left[\max \left\{W_{i}+\epsilon_{i}, \max _{k \neq i}\left\{\mathcal{W}_{k}-\varphi_{i k}^{E}+\epsilon_{k}\right\}\right\}\right]=s_{i i}^{E} \cdot W_{i}+\sum_{k \neq i}^{n} s_{i j}^{E} \cdot\left(\mathcal{W}_{j}-\varphi_{i k}^{E}\right) \\
& \mathcal{W}_{i}=p\left(\theta_{i}\right) \cdot W_{i}+\left(1-p\left(\theta_{i}\right)\right) \cdot U
\end{aligned}
$$

3. Wage determination - Nash bargaining

- Wages are such so that workers receive a share α_{i} of total surplus.
- Characterization of the surplus function

$$
\begin{aligned}
& S_{i}(\mathbf{z})=\left(\pi_{i}(\mathbf{z})+\kappa_{i}-b\right)-\beta \mathbb{E}_{\mathbf{z}}\left\{\left(1-\delta_{i}\right) \sum_{j \neq i} s_{i j}^{E}\left(\mathbf{z}^{\prime}\right) \varphi_{i j}^{E}-\sum_{j=1}^{n} s_{j}^{U}\left(\mathbf{z}^{\prime}\right) \varphi_{j}^{U}\right\} \\
& \quad+\beta \mathbb{E}_{\mathbf{z}}\left\{\left(1-\delta_{i}^{F}\left(\mathbf{z}^{\prime}\right)-s_{i}^{U}\left(\mathbf{z}^{\prime}\right) p\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right) \alpha_{i}-q\left(\theta_{i}\left(\mathbf{z}^{\prime}\right)\right)\left(1-\alpha_{i}\right)\right) S_{i}\left(\mathbf{z}^{\prime}\right)\right\} \\
& \quad+\beta \mathbb{E}_{\mathbf{z}}\left\{\sum_{j \neq i}\left[\left(\left(1-\delta_{i}\right) s_{i j}^{E}\left(\mathbf{z}^{\prime}\right)-s_{j}^{U}\left(\mathbf{z}^{\prime}\right)\right) p\left(\theta_{j}\left(\mathbf{z}^{\prime}\right)\right) \alpha_{j} S_{j}\left(\mathbf{z}^{\prime}\right)\right]\right\}
\end{aligned}
$$

- Standard term in search models
- Moving costs ($\equiv \Phi(\mathbf{z})$)
- Additional term if worker moves to another sector

Laws of Motion

- Period t begins with a mass of unemployed workers u_{t-1}, and employed workers $\mu_{t-1} \equiv \sum_{i=1}^{n} \mu_{i, t-1}$.
- Mass of exogenous job destruction $\Delta_{t} \equiv \sum_{i=1}^{n} \delta_{i} \mu_{i, t-1}$
- UE transitions: $\phi^{U} u_{t-1}$, where $\phi^{U}=\sum_{j=1}^{n} s_{j}^{U} p\left(\theta_{j}\right)$
- J2J transitions (from sector i): $\phi_{i}^{E} \mu_{i, t-1}$, where $\phi_{i}^{E}=\sum_{j \neq i} p\left(\theta_{j}\right) s_{i j}^{E}$
- Stayers in sector i: $\left(1-\delta_{i}^{F}\right) \mu_{i, t-1}, \delta_{i}^{F}=\left(1-\delta_{i}\right) s_{i i}^{E}$

Laws of Motion (con't)

- Law of motion for unemployment,

$$
u_{t}=\left(1-\phi^{U}\right) u_{t-1}+\Delta_{t}+\Lambda_{t}
$$

where $\Lambda_{t}=\sum_{j=1}^{n}\left(1-\phi_{j}^{\mathrm{E}}-s_{i i}^{\mathrm{E}}\right)\left(1-\delta_{i}\right) \mu_{j, t}$ is the measure of EU transitions

- Law of motion for sectoral employment

- Mass of jobseekers in sector $i\left(\equiv \psi_{i, t}\right)$

Stationary Distributions

- In a stationary environment, we have that

$$
\begin{aligned}
\phi^{U} u & =\Delta+\Lambda, \quad \delta_{i}^{F} \mu_{i}=p\left(\theta_{i}\right) \psi_{i} \\
\Rightarrow u & =\left(\phi^{U}\right)^{-1} \sum_{j=1}^{n}\left(\delta_{i}^{F}-\phi_{i}^{E}\left(1-\delta_{j}\right)\right) \mu_{j} \\
\mu_{i} & =\frac{p\left(\theta_{i}\right)}{\delta_{i}^{F}}\left[s_{i}^{U} u+\sum_{j \neq i} s_{j i}^{E}\left(1-\delta_{j}\right) \mu_{j}\right]
\end{aligned}
$$

- Recall from standard search model: $\delta u^{*}=\lambda\left(1-u^{*}\right)$
- Mass of workers is normalized to $1 \Rightarrow u_{t}+\mu_{t}=1$

Aggregate demand

- Full risk-sharing + no savings decision
- Family consume aggregate consumption good C
- Representative final good producer

$$
C=\left[\sum_{i=1}^{n} a_{i}^{1 / \sigma} c_{i}^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)} \Rightarrow c_{i}^{*}=a_{i} p_{i}^{-\sigma} Y
$$

- Price index (normalized to 1)

$$
P=\left[\sum_{i=1}^{n} a_{i} p_{i}^{1-\sigma}\right]^{1 /(1-\sigma)}
$$

Aggregate demand

- Market clearing

$$
\begin{aligned}
\mu_{i} y_{i} & =c_{i}+\sum_{j=1}^{n} x_{j i} \quad i=1, \ldots, n \\
u+\mu & =1
\end{aligned}
$$

- Resource constraint

$$
\Pi=\sum_{i=1}^{n} \mu_{i} \pi_{i}=C+\sum_{i=1}^{n} \theta_{i} \psi_{i} \kappa_{i}
$$

since ψ_{i} is the mass of jobseekers in sector i

Calibration

- Some parameters can be calibrated directly from the data: Ω, β, a
- Remaining parameters can be estimated using simulation-based methods (SMM, AMM!)

Parameter	Target
η	Sectoral Labor shares
α	Wage growth
κ	Vacancies, firm entry
δ	Sectoral JD rate
Φ, M	EE, UE transitions

Road Ahead

1. Compare network + search economy with...

- No production networks: $\eta=0$
- No search frictions: $\kappa=0, p(\theta), q(\theta)=1$
- Different network structures: Ω

2. At this point, no worker heterogeneity.

- Introduce occupation networks!

Thanks!

Sectoral labor shares - Data

Sectoral Labor shares - Model

- Free entry condition

$$
\begin{aligned}
J_{i}(\mathbf{z}) & =\pi_{i}(\mathbf{z})-w_{i}+\beta\left(1-\delta_{i}^{F}\right) J_{i}(\mathbf{z}) \\
0 & =-\kappa_{i}+p\left(\theta_{i}\right) J_{i}(\mathbf{z})
\end{aligned}
$$

gives

$$
\begin{aligned}
w_{i} & =\pi_{i}(\mathbf{z})-\left[\frac{1-\beta\left(1-\delta_{i}^{F}\right)}{p\left(\theta_{i}\right)}\right] \kappa_{i} \\
L_{i}^{S} & \simeq\left(1-\eta_{i}\right)-\frac{\delta_{i}^{F}}{p\left(\theta_{i}\right)} \frac{\kappa_{i}}{p_{i} y_{i}(\mathbf{z})}
\end{aligned}
$$

